
Made by batuexams.com

at MET Bhujbal Knowledege City

Object Orented Programming in C++ Department

The PDF notes on this website are the copyrighted property of batuexams.com.

All rights reserved.

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 1

Sandipani Technical Campus Faculty of Engineering, Latur

Unit-2 Operator Overloading and Inheritance

2.1 Introduction to inheritance, Derived classes, Visibility Modes and Effects

2.2 Types of inheritance: Single, multilevel, multiple, hierarchical, Hybrid

inheritance,

2.3 Overloading Unary and Binary Operators

2.1 Concepts of inheritance

 Inheritance is another important feature of Object Oriented Programming.

 Inheritance gives you the way to use already existing classes into the new class rather

than writing existing class code again into new class.

 The mechanism of deriving a new class from an old class is called Inheritance.

 The old class is referred as base class and new class is referred as Derived class.

 The derived class inherits some or all the properties from the base class.

2.1.1 Defining Derived classes: -

Derived class can be defined by specifying its relationship with the base class.

Syntax: -

Class derivedclassname: VisibilityMode Baseclassname

{

 //code

}

In syntax the colon (:) indicates that the derived classname is derived from the base classname.

The visibility mode specifies that in which way base class is derived.

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 2

Sandipani Technical Campus Faculty of Engineering, Latur

2.1.2 Visibility Modes and Effects

The following table shows the visibility of base class derived into derived class.

Base class Visibility

Derived Class Visibility (Visibility Modes)

Private Derivation Public Derivation Protected

Derivation

Private Not Inherited Not Inherited Not Inherited

Public Private Public Protected

Protected Private Protected protected

Class A

{

private:

int a;

protected:

int Pa;

public:

void getA();

void putA();

};

Class B: public A OR class B: private A OR class B: protected A

{

private:

int b;

protected:

int Pb;

public:

void getB();

void putB();

};

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 3

Sandipani Technical Campus Faculty of Engineering, Latur

 When a base class is privately inherited by a derived class then public and protected

member of base class becomes private member of derived class.

 When a base class is publicly inherited by a derived class then public member becomes

public member of derived class and protected member of base class becomes protected

member of derived class.

 When a base class is protected inherited by a derived class then public and protected

member of base class becomes protected member of derived class.

Hence in all these three derivation private member of a base class is not inherited at all.

2.2 Types of inheritance

1) Single Inheritance

2) Multilevel Inheritance

3) Multiple Inheritance

4) Hierarchical Inheritance

5) Hybrid Inheritance

1) Single Inheritance: -

 Base Class

 Derived Class

Syntax: -

class A

{

 //code

};

class B:public A

{

 //code

};

In single inheritance one base class is present and only one derived class is present.

As in figure class B inherits all the properties of base class A.

A

B

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 4

Sandipani Technical Campus Faculty of Engineering, Latur

As shown in Syntax Class B publicly derived from Class A so class B contains its own data and

the data from the public section of class A.

// Program to Demonstrate use of Single Inheritance

#include <iostream>

#include <conio.h>

using namespace std;

class A

{

private:

 int a;

public:

 void getA()

 {

 cout<<"Enter Value of a";

 cin>>a;

 }

 void putA()

 {

 cout<<"Value Of a="<<a;

 }

};

class B:public A

{

private:

 int b;

public:

 void getB()

 {

 cout<<"Enter Value of b";

 cin>>b;

 }

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 5

Sandipani Technical Campus Faculty of Engineering, Latur

 Base Class

 Derived Class/Intermediate Derived/Base Class

A

B

C

 void putB()

 {

 cout<<"Value Of b="<<b;

 }

};

int main()

{

B B1;

B1.getA();

B1.putA();

B1.getB();

B1.putB();

return(0);

}

2) Multilevel Inheritance-

Derived Class

Syntax:

 class A

 {

 code//;

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 6

Sandipani Technical Campus Faculty of Engineering, Latur

 };

 clss B: public A

 {

 code;

 };

 class C :public B

 {

 code;

 };

When one Class is derived from another derived class then it is called as multilevel

inheritance.

As in fig class A act as a base class for derived class B and derived class ‘B’ act as a base class

for derived class ‘C’.

// Program to Demonstrate use of Multiplevel Inheritance

#include <iostream>

#include <conio.h>

using namespace std;

class A

{

private:

 int a;

public:

 void getA()

 {

 cout<<"Enter Value of a";

 cin>>a;

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 7

Sandipani Technical Campus Faculty of Engineering, Latur

 }

 void putA()

 {

 cout<<"Value Of a="<<a;

 }

};

class B:public A

{

private:

 int b;

public:

 void getB()

 {

 cout<<"Enter Value of b";

 cin>>b;

 }

 void putB()

 {

 cout<<"Value Of b="<<b;

 }

};

class C:public B

{

private:

 int c;

public:

 void getC()

 {

 cout<<"Enter Value of c";

 cin>>c;

 }

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 8

Sandipani Technical Campus Faculty of Engineering, Latur

 More Base Classes

 Only One Derived Class

A B

C

 void putC()

 {

 cout<<"Value Of c="<<c;

 }

};

int main()

{

C C1;

C1.getA();

C1.putA();

C1.getB();

C1.putB();

C1.getC();

C1.putC();

return(0);

}

In above program class C publicly inherits the details of class B and Class ‘B’ publicly derived

from ‘A’, so we can call class ‘A’ and class ‘B’ public member functions by using object of class

‘C’.

3) Multiple Inheritance-

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 9

Sandipani Technical Campus Faculty of Engineering, Latur

Syntax-

 class A

 {

 //code;

 };

 class B

 {

 //code;

 };

 class C : public A, public B

 {

 //code;

 };

When one class which is derived from more than one base classes then it is called as multiple

inheritance.

In multiple inheritance only one derived class and more than one base classes are present. Thus

multiple inheritance allows us to combine the feature of several existing classes.

// Program to Demonstrate use of Multiple Inheritance

#include <iostream>

#include <conio.h>

using namespace std;

class A

{

private:

 int a;

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 10

Sandipani Technical Campus Faculty of Engineering, Latur

public:

 void getA()

 {

 cout<<"Enter Value of a";

 cin>>a;

 }

 void putA()

 {

 cout<<"Value Of a="<<a;

 }

};

class B

{

private:

 int b;

public:

 void getB()

 {

 cout<<"Enter Value of b";

 cin>>b;

 }

 void putB()

 {

 cout<<"Value Of b="<<b<<"\n";

 }

};

class C:public A, public B

{

private:

 int c;

public:

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 11

Sandipani Technical Campus Faculty of Engineering, Latur

B C

A

 void getC()

 {

 cout<<"Enter Value of c";

 cin>>c;

 }

 void putC()

 {

 cout<<"Value Of c="<<c<<"\n";

 }

};

int main()

{

C C1;

C1.getA();

C1.putA();

C1.getB();

C1.putB();

C1.getC();

C1.putC();

return(0);

}

4) Hierarchical Inheritance-

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 12

Sandipani Technical Campus Faculty of Engineering, Latur

Syntax-

class A

 {

 //code;

 };

class B : public A

 {

 //code;

 };

class C : public A

 {

 //code;

 };

It is a type of inheritance in which more than one classes derived from a single base class.

In hierarchical inheritance only one base class is present and more than one derived class is

present.

All derived classes are derived from a common base class.

// Program to Demonstrate use of Hierarchical Inheritance

#include <iostream>

#include <conio.h>

using namespace std;

class A

{

private:

 int a;

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 13

Sandipani Technical Campus Faculty of Engineering, Latur

public:

 void getA()

 {

 cout<<"Enter Value of a";

 cin>>a;

 }

 void putA()

 {

 cout<<"Value Of a="<<a;

 }

};

class B: public A

{

private:

 int b;

public:

 void getB()

 {

 cout<<"Enter Value of b";

 cin>>b;

 }

 void putB()

 {

 cout<<"Value Of b="<<b<<"\n";

 }

};

class C:public A

{

private:

 int c;

public:

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 14

Sandipani Technical Campus Faculty of Engineering, Latur

B

C

A

D

 void getC()

 {

 cout<<"Enter Value of c";

 cin>>c;

 }

 void putC()

 {

 cout<<"Value Of c="<<c<<"\n";

 }

};

int main()

{

B B1;

B1.getA();

B1.putA();

B1.getB();

B1.putB();

C C1;

C1.getA();

C1.putA();

C1.getC();

C1.putC();

return(0);

}

5) Hybrid Inheritance :-

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 15

Sandipani Technical Campus Faculty of Engineering, Latur

B

C

A

D

Syntax-

class A

{

 //code;

};

class B : public A

{

 //code;

};

class D

{

 //code;

};

class c : public B,public D

{

 //code;

};

 Hybrid inheritance is a combination of multiple and multilevel inheritance as in

figure the class C will have both they multilevel multiple inheritance. Thus they class C has

features of all they other classes.

class A

{

 int a;

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 16

Sandipani Technical Campus Faculty of Engineering, Latur

 public:

void geta()

{

 cout<<"Enter the value of a";

 cin>>a;

}

void puta()

{

 cout<<a;

}

};

class B : public A

{

 int b;

public:

void getb()

{

 cout<<"Enter value of b";

 cin>>b;

}

void putb()

{

 cout<<b;

}

};

class D

{

 int D;

 public:

 void getd()

 {

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 17

Sandipani Technical Campus Faculty of Engineering, Latur

 cout<<"Enter value of d";

 cin>>d;

}

void putd()

{

 cout<<d;

}

};

class C : public B,public D

{

 int c;

public:

void getc()

{

 cout<<"Enter value of c";

 cin>>c;

}

void putc()

{

 cout<<c;

}

};

void main()

{

 C C1;

 C1.geta();

 C1.puta();

 C1.getb();

 C1.putb();

 C1.getc();

 C1.putc();

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 18

Sandipani Technical Campus Faculty of Engineering, Latur

 C1.getd();

 C1.putd();

 getch();

}

2.3 Operator Overloading

Operator overloading is the mechanism to give special meaning to an operator for the different

data type.

We can give the special meaning to an operator but we are not going to change the basic

meaning of an operator.

To overload the operator we have a special operator function operator() in C++.

Syntax of declaring operator Function inside class: -

<return type> operator op(argument list);

Defining operator Function outside class: -

<return type> <class name>:: operator op(arguments list)

{

//code

}

 Here return type is the type of value return by the specified operation in the operator ().

 Operator is the keyword which tells to the compiler that it is a operator function.

 OP is the operator being overloaded.

Operator () function must be either member function or friend function but not the static

function of a class.

By using this operator function we can overload 2 types of operators:-

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 19

Sandipani Technical Campus Faculty of Engineering, Latur

1) Unary Operator : ++,-- (Requires only one operand) Ex: a++

2) Binary Operator :+,-,*,/ (Requires Two Operands) Ex: a + b

Rules for operator overloading: -

1) Only existing operators can be overloaded.

2) New operators cannot be created.

3) We cannot change the basic meaning of an operator.

4) The overloaded operator must have at least one operand.

5) Overloaded operator follows the syntax & rules of original operators.

6) Unary and binary operators overloaded using member function as well as friend function

of a class.

7) Following operators cannot be overloaded-

1] pointer to member (, .*)

 2] Scope Resolution Operator (::)

 3) Conditional Operator (?)

 4) Size Of Operator (sizeof())

 5) Membership Operator (.)

Function No of arguments required

Unary Binary

Member Function No arguments One explicit argument (01)

Friend Function One reference argument (01) Two explicit operator (02)

1. Unary operator Overloading:-

 The unary operators operate on a single operand and following are the examples of Unary

operators −

o The increment (++) and decrement (--) operators.

o The unary minus (-) operator.

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 20

Sandipani Technical Campus Faculty of Engineering, Latur

o The logical not (!) operator.

 The unary operators operate on the object for which they were called and normally, this

operator appears on the left side of the object, as in !obj, -obj, and ++obj but sometime

they can be used as postfix as well like obj++ or obj--.

 Following example explain how minus (-) operator can be overloaded for prefix as well

as postfix usage

Class data

{

int x,y,z;

public:

void accept()

{

cout<<”Enter x,y,z value”;

cin>>x>>y>>z;

}

void display()

{

cout<<x<<y<<z;

}

void operator -();

};

void data :: operator –()

{

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 21

Sandipani Technical Campus Faculty of Engineering, Latur

x = -x;

y = -y;

z= -z;

}

void main()

{

Data D1;

D1.accept();

-D1; //Call Operator –() Function

D1.display();

getch();

}

2. Binary Operator Overloading

Binary operators work on two operands. For example,

result = num + 9;

Here, + is a binary operator that works on the operands num and 9.

When we overload the binary operator for user-defined types by using the code:

obj3 = obj1 + obj2;

The operator function is called using the obj1 object and obj2 is passed as an argument to

the function.

class Distance

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 22

Sandipani Technical Campus Faculty of Engineering, Latur

{
public:
 // Member Object
 int feet, inch;
 // No Parameter Constructor
 Distance()
 {
 this->feet = 0;
 this->inch = 0;
 }

 // Constructor to initialize the object's value
 // Parametrized Constructor
 Distance(int f, int i)
 {
 this->feet = f;
 this->inch = i;
 }

 // Overloading (+) operator to perform addition of
 // two distance object
 Distance operator+(Distance& d2) // Call by reference
 {
 // Create an object to return
 Distance d3;

 // Perform addition of feet and inches
 d3.feet = this->feet + d2.feet;
 d3.inch = this->inch + d2.inch;

 // Return the resulting object
 return d3;
 }
};

// Driver Code
int main()
{
 // Declaring and Initializing first object
 Distance d1(8, 9);

 // Declaring and Initializing second object
 Distance d2(10, 2);

 // Declaring third object
 Distance d3;

 // Use overloaded operator
 d3 = d1 + d2;

DOWNLOADED FROM BATU-EXAMS.in

OOP using C++: UNIT-2 Operator Overloading and Inheritance Prof. Laxmikant Goud: Page 23

Sandipani Technical Campus Faculty of Engineering, Latur

 // Display the result
 cout << "\nTotal Feet & Inches: " << d3.feet << "'" << d3.inch;
 return 0;
}

DOWNLOADED FROM BATU-EXAMS.in

Made by batuexams.com

at MET Bhujbal Knowledege City

The PDF notes on this website are the copyrighted property of batuexams.com.

All rights reserved.

